Binary Search Tree Java Proje

/**

* Lab Test problem on binary search trees.

*

*/

public class BinarySearchTreeLabTest {

/** Provides an example. */

public static void main(String[] args) {

BinarySearchTree<Integer> iBst = new BinarySearchTree<>();

iBst.add(10);

iBst.add(12);

iBst.add(8);

iBst.add(2);

iBst.add(6);

iBst.add(4);

int depth = iBst.depth(7);

// The following statement should print -1.

System.out.println(depth);

depth = iBst.depth(10);

// The following statement should print 1.

System.out.println(depth);

depth = iBst.depth(6);

// The following statement should print 4.

System.out.println(depth);

BinarySearchTree<String> sBst = new BinarySearchTree<>();

sBst.add(“W”);

sBst.add(“A”);

sBst.add(“R”);

sBst.add(“E”);

sBst.add(“A”);

sBst.add(“G”);

sBst.add(“L”);

sBst.add(“E”);

depth = sBst.depth(“W”);

// The following statement should print 1.

System.out.println(depth);

depth = sBst.depth(“A”);

// The following statement should print 2.

System.out.println(depth);

depth = sBst.depth(“G”);

// The following statement should print 5.

System.out.println(depth);

}

/** Defines a binary search tree. */

static class BinarySearchTree<T extends Comparable<T>> {

// the root of this binary search tree

private Node root;

// the number of nodes in this binary search tree

private int size;

/** Defines the node structure for this binary search tree. */

private class Node {

T element;

Node left;

Node right;

/** Constructs a node containing the given element. */

public Node(T elem) {

element = elem;

left = null;

right = null;

}

}

/* >>>>>>>>>>>>>>>>>> YOUR WORK STARTS HERE <<<<<<<<<<<<<<<< */

///////////////////////////////////////////////////////////////////////////////

// I M P L E M E N T T H E D E P T H M E T H O D B E L O W //

///////////////////////////////////////////////////////////////////////////////

/**

* Returns the depth of the node containing value

* or -1 if value not present.

*/

public int depth(T value) {

}

/* >>>>>>>>>>>>>>>>>> YOUR WORK ENDS HERE <<<<<<<<<<<<<<<< */

////////////////////////////////////////////////////////////////////

// D O N O T M O D I F Y B E L O W T H I S P O I N T //

////////////////////////////////////////////////////////////////////

////////////////////

// M E T R I C S //

////////////////////

/**

* Returns the number of elements in this bst.

*/

public int size() {

return size;

}

/**

* Returns true if this bst is empty, false otherwise.

*/

public boolean isEmpty() {

return size == 0;

}

/**

* Returns the height of this bst.

*/

public int height() {

return height(root);

}

/**

* Returns the height of node n in this bst.

*/

private int height(Node n) {

if (n == null) {

return 0;

}

int leftHeight = height(n.left);

int rightHeight = height(n.right);

return 1 + Math.max(leftHeight, rightHeight);

}

////////////////////////////////////

// A D D I N G E L E M E N T S //

////////////////////////////////////

/**

* Ensures this bst contains the specified element. Uses an iterative implementation.

*/

public void add(T element) {

// special case if empty

if (root == null) {

root = new Node(element);

size++;

return;

}

// find where this element should be in the tree

Node n = root;

Node parent = null;

int cmp = 0;

while (n != null) {

parent = n;

cmp = element.compareTo(parent.element);

if (cmp == 0) {

// don’t add a duplicate

return;

} else if (cmp < 0) {

n = n.left;

} else {

n = n.right;

}

}

// add element to the appropriate empty subtree of parent

if (cmp < 0) {

parent.left = new Node(element);

} else {

parent.right = new Node(element);

}

size++;

}

}

}

INSTRUCTIONS:

  1. Read through all the provided source code to make sure that you understand the context. A class named BinarySearchTree with an add method plus various utility methods is provided for you. You must not change any provided method with a body that is already complete. Note that linked nodes are used to implement the BinarySearchTree class. Note also that the data type allowed in the BinarySearchTree is constrained to be a class that implements the Comparable interface and thus has a natural total order defined.
  2. The depth method of the BinarySearchTree class currently has no body. You must provide a correct body for the depth method.
  3. A sample main method is provided to illustrate building a simple binary search tree and then using the depth method for particular values.
Place this order or similar order and get an amazing discount. USE Discount code “GET20” for 20% discount